Startuj z nami!

www.szkolnictwo.pl

praca, nauka, rozrywka....

mapa polskich szkół
Nauka Nauka
Uczelnie Uczelnie
Mój profil / Znajomi Mój profil/Znajomi
Poczta Poczta/Dokumenty
Przewodnik Przewodnik
Nauka Konkurs
uczelnie

zamów reklamę
zobacz szczegóły
uczelnie

promieniowanie rentgenowskie

promieniowanie rentgenowskie - (w wielu krajach nazywane promieniowaniem X lub promieniami X) – rodzaj promieniowania elektromagnetycznego, którego długość fali mieści się w zakresie od 10 pm do 10 nm. Zakres promieniowania rentgenowskiego znajduje się pomiędzy ultrafioletem i promieniowaniem gamma. Znanym skrótem nazwy jest promieniowanie rtg.

Zakresy promieniowania rentgenowskiego

  • twarde promieniowanie rentgenowskie – długość fali od 5 pm do 100 pm
  • miękkie promieniowanie rentgenowskie – długość fali od 0,1 nm do 10 nm

Źródła promieniowania

Promieniowanie rentgenowskie uzyskuje się w praktyce (np. w lampie rentgenowskiej) poprzez wyhamowywanie rozpędzonych elektronów na materiale o dużej (powyżej 20) liczbie atomowej (promieniowanie hamowania), efektem czego jest powstanie promieniowania o charakterystyce ciągłej, na którym widoczne są również piki pochodzące od promieniowania charakterystycznego anody (rozpędzone elektrony wybijają elektrony z atomów anody). Luki po wybitych elektronach na dolnych powłokach elektronowych pozostają puste do czasu, aż zapełnią je elektrony z wyższej powłoki. Elektron przechodząc z wyższego stanu emituje kwant promieniowania rentgenowskiego – następuje emisja charakterystycznego promieniowania X. Promieniowanie X powstaje także w wyniku wychwytu elektronu, tj. gdy jądro przechwytuje elektron znajdujący się na powłoce K, w wyniku czego powstaje wolne miejsce, na które spadają elektrony z wyższych powłok i następuje emisja kwantu X. Przykładem źródła promieniowania X działającego w oparciu o wychwyt elektronu jest 55Fe, emitujące 80% kwantów o energii ok. 5,9 keV (linia Kα) oraz 20% o energii 6,2 keV (linia Kβ).

Obecnie są budowane także efektywniejsze źródła promieniowania X, promieniowanie wytwarzane jest przez poruszające się po okręgu elektrony w synchrotronach, stąd promieniowanie to nazywa się promieniowaniem synchrotronowym. Pierwsze źródła promieniowania synchrotronowego należące do tzw. I i II generacji były stosunkowo mało wydajne. Dopiero źródła promieniowania synchrotronowego nowszej konstrukcji, należące do III generacji, pozwoliły na osiąganie większych natężeń promieniowania, a przede wszystkim umożliwiły w miarę ciągłą bezawaryjną pracę. Synchrotrony III generacji zaopatrywano też z reguły w tzw. "urządzenia wstawkowe" (ang. insertion devices) – wigglery i undulatory. W urządzeniach tych elektrony poruszają się w periodycznym polu magnetycznym po trajektorii zbliżonej do sinusoidy, dzięki czemu natężenie emitowanego promieniowania znacznie się zwiększa (nawet o kilka rzędów wielkości) w stosunku do natężenia promieniowania wytwarzanego w polu magnesów zakrzywiających synchrotronu bez urządzeń wstawkowych. Przykładem źródeł synchrotronowych mogą być: BESSY II (Berlin), DORIS III (II generacji, Hasylab, Hamburg), ESRF (III generacji, Grenoble). Obecnie działają już źródła kolejnej, IV. generacji promieniowania synchrotronowego, lasery rentgenowskie (lasery na elektronach swobodnych, FEL – ang. Free Electron Laser). Najsilniejszy z nich, laser FLASH w DESY (Hamburg) wytwarza impulsy monochromatycznego promieniowania w zakresie XUV-SX (skrajnego ultrafioletu próżniowego do miękkiego promieniowania rentgenowskiego), o czasie trwania około 25 femtosekund i mocy szczytowej w impulsie dochodzącej do 1 GW. Lasery FEL są przestrajalne, a emitowane przez nie promieniowanie jest spójne i spolaryzowane liniowo. Szczytowe natężenie w impulsie osiągać może wartości ponad 9 rzędów wielkości większe niż otrzymywane z najpotężniejszych synchrotronów III generacji. W lutym 2007 w tym samym ośrodku w Hamburgu rozpoczęto budowę europejskiego lasera X-FEL działającego w rentgenowskim zakresie długości fali 6 nm – 0,1 nm. Przewiduje się, że pełną operacyjną zdolność działania laser ten osiągnie w roku 2013.

W 2008 r. w czasopiśmie Nature ukazała się publikacja informująca, że źródłem nanosekundowych błysków promieniowania rentgenowskiego jest rozwijana w próżni standardowa taśma klejąca. Promieniowanie z taśmy jest wystarczająco silne do wykonania zdjęcia rentgenowskiego

Promieniowanie i medycyna

Promieniowanie rentgenowskie jest wykorzystywane do uzyskiwania zdjęć rentgenowskich, które pozwalają m.in. na diagnostykę złamań kości i chorób płuc oraz do rentgenowskiej tomografii komputerowej. Naświetlanie promieniami rentgenowskimi zabija komórki nowotworowe, co wykorzystuje się w radioterapii. Przyjęcie dużej dawki promieniowania może powodować oparzenia i chorobę popromienną.


Inne hasła zawierające informacje o "promieniowanie rentgenowskie":

1933 ...

Marian Mazur (naukowiec) ...

Ziemia ...

Rozpraszanie Rayleigha ...

Podczerwień ...

Tytan (pierwiastek) ...

Katastrofa elektrowni jądrowej w Czarnobylu ...

Czarnobyl ...

Obróbka ...

Krzywica ...


Inne lekcje zawierające informacje o "promieniowanie rentgenowskie":

023. Opis stanów atmosfery. Pogoda i klimat (plansza 12) ...

Energia atomowa (plansza 7) ...

Skóra (plansza 3) ...





Zachodniopomorskie Pomorskie Warmińsko-Mazurskie Podlaskie Mazowieckie Lubelskie Kujawsko-Pomorskie Wielkopolskie Lubuskie Łódzkie Świętokrzyskie Podkarpackie Małopolskie Śląskie Opolskie Dolnośląskie